
Avoiding Monoliths

DjangoCon EU 2015
Hanna Kollo



2

● Hanna Kollo
– Software engineer at Spilgames

● Github
– https://github.com/spil-hanna

● Twitter
– https://twitter.com/hannakollo

● Blog
– http://harbour77.eu/

About me

https://github.com/spil-hanna
https://twitter.com/hannakollo
http://harbour77.eu/


3

● Casual gaming

● 125 million monthly active users

● ~40 websites

● www.gamesgames.com

About SpilGames

http://www.gamesgames.com/


4

● Service oriented architecture
– Load-sensitive components in Erlang

– Some components in Python

● Internal tools
– Most of them in Python / Django

– Business-driven applications

Changing requirements

A challenge to keep the code clean

Python and Django @ SpilGames



5

● Django
– project

– apps

● monolith=no modularity
– one app

– models, views, html 
templates

– Spaghetti code: everything 
connected to everything

Monoliths & Django



6

● Monoliths are bad!
– Opposite of modularity

● Hard
– Hard to understand

– Hard to make changes

– Hard to decide what impacts what

– Hard to reuse

● Avoiding them
– The story of the publishing project

Monoliths (cont)



7

● First iteration
– Design a modular structure upfront

– Many small apps

● Few models in one app

Publishing project (1st iter)



8

● First iteration
– Design a modular structure upfront

– Many small apps

● Few models in one app

● No monolith
– But...

Publishing project (1st iter)



9

● Start with one app
– Get it to a stable point (minimum viable product)

● Add more apps
– One by one

– Consider major refactoring

Publishing project (2nd iter)



10

● Start with one app
– Get it to a stable point (minimum viable product)

● Add more apps
– One by one

– Consider major refactoring

● Few large apps
– Many models in one app

– Tree-like structure of dependencies

Publishing project (2nd iter)



11

Transition



12

Transition



13

Transition



14

● No monolith
– No spaghetti code

– Facilitates growth

● Main structural difference
– 1st iter: Few models in many apps

– 2nd iter: Many models in few app

● Driving force when adding code
– Business logic

● Problems with the size?

Why is it better



15

● Where to put business logic?
– Common practice: Model managers

– Our practice: Services layer

● Services
– Business logic... is not only about data

– Examples

● export some data somewhere
● send notification emails
● “HAL, open the pod bay doors”

– Easier to unit-test

Structure within the app



16

from models import PodBayDoor
from services import HAL

def view1(request):
    # read object directly
    door = PodBayDoor.objects.get(pk=1)
    # read object through service
    info = HAL.check_state(door)

    # update object through service
    if request.method == 'POST':    
        HAL.open(door)

    

Using services



17

● Two options
– Few apps with many 

models ← better

– Many apps with few 
models

● Start with one app
– grow into a tree-like 

structure of apps

● Services layer
– For business logic

Summary


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

